Đề thi IMO 2013 (Olympic Toán học Quốc tế 54)
(www.MATHVN.com) - Đề thi IMO 2013 (Olympic Toán học Quốc tế lần thứ 54). Kỳ thi đang diễn ra tại Colombia. Đoàn Việt Nam có 6 thí sinh tham dự (xem danh sách 6 anh tài).
Dưới đây là đề thi IMO năm 2013 (mỗi ngày 3 bài)
$$ 1+\frac{2^k-1}{n}=\left(1+\frac{1}{m_1}\right)\left(1+\frac{1}{m_2}\right)\dots\left(1+\frac{1}{m_k}\right).$$
2 Trên mặt phẳng cho 2013 điểm màu đỏ và 2014 điểm màu xanh, trong đó không có ba điểm nào thẳng hàng. Ta chia mặt phẳng bởi các đường thẳng (không đi qua bất kì điểm nào trong các điểm đã cho) thành các vùng, sao cho không có bất kì vùng nào chứa các điểm có hai màu khác nhau. Cần ít nhất là bao nhiêu đường thẳng để luôn thực hiện được cách chia đó?
3 Cho tam giác $ABC$ và $A_1, B_1, C_1$ lần lượt là các điểm tiếp xúc của các đường tròn bàng tiếp với các cạnh $BC$, $AC$ và $AB$. Chứng minh rằng nếu tâm đường tròn ngoại tiếp của tam giác $A_1B_1C_1$ nằm trên đường tròn ngoại tiếp của tam giác $ABC$ thì $ABC$ là tam giác vuông.
4 Cho tam giác nhọn $ABC$ có trực tâm $H$, và $W$ là một điểm trên cạnh $BC$, nằm giữa $B$ và $C$. Các điểm $M$ và $N$ theo thứ tự là chân các đường cao hạ từ các đỉnh $B$ và $C$. Gọi $\omega_1$ là đường tròn ngoại tiếp tam giác $BWN$, và $X$ là một điểm trên đường tròn sao cho $WX$ là đường kính của $\omega_1$. Tương tự, $\omega_2$ là đường tròn ngoại tiếp của tam giác $CWM$, và $Y$ là điểm sao cho $WY$ là đường kính của $\omega_2$. Chứng minh rằng ba điểm $X, Y$ và $H$ thẳng hàng.
5 Cho $\mathbb Q_{>0}$ là tập hợp các số hữu tỉ dương, và $f: \mathbb Q_{>0} \to \mathbb R$ là hàm số thỏa mãn các điều kiện sau:
(i) $f(x)f(y) \geq f(xy)$ với mọi $x, y \in \mathbb Q_{>0}$, (ii) $f(x+y) \geq f(x) + f(y)$ với mọi $x, y \in \mathbb Q_{>0}$, (iii) Tồn tại số hữu tỉ $a> 1$ sao cho $f (a) = a$.
Chứng minh rằng $f(x) = x$ với mọi $x \in \mathbb Q_{>0}$.
6 Cho số nguyên $n\geq 3$ và xét $n+1$ điểm nằm cách đều nhau trên một đường tròn. Ta đánh số các điểm này bằng các giá trị $0,1,\dots, n$, không nhất thiết theo thứ tự, và hai điểm khác nhau thì được đánh hai số khác nhau. Hai cách đánh số được xem là như nhau nếu từ cách này có thể nhận được cách kia bằng cách xoay đường tròn. Một cách đánh số được gọi là đẹp nếu, với bất kì bốn số $a<b<c<d$ với $a+d=b+c$, dây cung nối các điểm được đánh số $a$ và $d$ không cắt dây cung nối các điểm được đánh số $b$ và $c$. Gọi $M$ là số cách đánh số đẹp và $N$ là số các cặp số nguyên dương $(x,y)$ được sắp thứ tự sao cho $x+y\leq n$ và $\gcd(x,y)=1$. Chứng minh rằng $M=N+1$.
Nguồn: Art of Problem Solving
Xem thêm
Dưới đây là đề thi IMO năm 2013 (mỗi ngày 3 bài)
Ngày thứ nhất (23/7/2013 - giờ Colombia)
1 Chứng minh rằng với mọi số nguyên dương $k, n$, tồn tại các số nguyên dương $m_1, m_2, \ldots, m_k$ sao cho$$ 1+\frac{2^k-1}{n}=\left(1+\frac{1}{m_1}\right)\left(1+\frac{1}{m_2}\right)\dots\left(1+\frac{1}{m_k}\right).$$
2 Trên mặt phẳng cho 2013 điểm màu đỏ và 2014 điểm màu xanh, trong đó không có ba điểm nào thẳng hàng. Ta chia mặt phẳng bởi các đường thẳng (không đi qua bất kì điểm nào trong các điểm đã cho) thành các vùng, sao cho không có bất kì vùng nào chứa các điểm có hai màu khác nhau. Cần ít nhất là bao nhiêu đường thẳng để luôn thực hiện được cách chia đó?
3 Cho tam giác $ABC$ và $A_1, B_1, C_1$ lần lượt là các điểm tiếp xúc của các đường tròn bàng tiếp với các cạnh $BC$, $AC$ và $AB$. Chứng minh rằng nếu tâm đường tròn ngoại tiếp của tam giác $A_1B_1C_1$ nằm trên đường tròn ngoại tiếp của tam giác $ABC$ thì $ABC$ là tam giác vuông.
Ngày thứ hai (24/7/2013 - giờ Colombia)
4 Cho tam giác nhọn $ABC$ có trực tâm $H$, và $W$ là một điểm trên cạnh $BC$, nằm giữa $B$ và $C$. Các điểm $M$ và $N$ theo thứ tự là chân các đường cao hạ từ các đỉnh $B$ và $C$. Gọi $\omega_1$ là đường tròn ngoại tiếp tam giác $BWN$, và $X$ là một điểm trên đường tròn sao cho $WX$ là đường kính của $\omega_1$. Tương tự, $\omega_2$ là đường tròn ngoại tiếp của tam giác $CWM$, và $Y$ là điểm sao cho $WY$ là đường kính của $\omega_2$. Chứng minh rằng ba điểm $X, Y$ và $H$ thẳng hàng.
5 Cho $\mathbb Q_{>0}$ là tập hợp các số hữu tỉ dương, và $f: \mathbb Q_{>0} \to \mathbb R$ là hàm số thỏa mãn các điều kiện sau:
(i) $f(x)f(y) \geq f(xy)$ với mọi $x, y \in \mathbb Q_{>0}$, (ii) $f(x+y) \geq f(x) + f(y)$ với mọi $x, y \in \mathbb Q_{>0}$, (iii) Tồn tại số hữu tỉ $a> 1$ sao cho $f (a) = a$.
Chứng minh rằng $f(x) = x$ với mọi $x \in \mathbb Q_{>0}$.
6 Cho số nguyên $n\geq 3$ và xét $n+1$ điểm nằm cách đều nhau trên một đường tròn. Ta đánh số các điểm này bằng các giá trị $0,1,\dots, n$, không nhất thiết theo thứ tự, và hai điểm khác nhau thì được đánh hai số khác nhau. Hai cách đánh số được xem là như nhau nếu từ cách này có thể nhận được cách kia bằng cách xoay đường tròn. Một cách đánh số được gọi là đẹp nếu, với bất kì bốn số $a<b<c<d$ với $a+d=b+c$, dây cung nối các điểm được đánh số $a$ và $d$ không cắt dây cung nối các điểm được đánh số $b$ và $c$. Gọi $M$ là số cách đánh số đẹp và $N$ là số các cặp số nguyên dương $(x,y)$ được sắp thứ tự sao cho $x+y\leq n$ và $\gcd(x,y)=1$. Chứng minh rằng $M=N+1$.
Nguồn: Art of Problem Solving
Xem thêm
Đăng nhận xét